

Joseph R. Adams
RHIC/AGS Annual Users' Meeting
22 October 2020

Produced-particle polarization

- Non-central nuclear collisions carry large angular momentum, $\overline{J} = \overrightarrow{r} \times \overrightarrow{p}$
- \overline{J} is manifested in the gradient (along \widehat{x}) of the longitudinal momentum, p_z
- Simply through spin-orbit coupling, there can be non-zero polarization of produced particles aligned with \overline{J}

Pre collision

Post collision

Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005), Erratum:ibid. 96, 039901 (2006).

Produced-particle polarization

- Equilibrium hydrodynamics has proven as a successful description of the QGP
- Particle polarization should be able to be derived using this framework as well
- In this context, we think about thermal vorticity of QGP fluid cells that is transfered to hadron spin at freeze out

Becattini F, Csernai L, Wang DJ. Phys. Rev. C 88 034905 (2013), Erratum: Phys. Rev. C 93 6 069901(2016)

Measuring $\overline{\mathbf{P}}$

$$\overline{P}_{\Lambda/\overline{\Lambda}} = \frac{8}{\pi \alpha_{\Lambda/\overline{\Lambda}}} \frac{1}{R_{EP}^{(1)}} \langle \sin(\Psi_1 - \varphi_{p^+}^*) \rangle$$

Lambdas don't emit daughters exactly along spin

Correlates angular momentum of QGP with Lambda's spin

The measured Ψ_1 differs from Ψ_{RP}

$\operatorname{Res}(\Psi_{\scriptscriptstyle 1})$ Measuring P STAR Au+Au at √s_{NN}=200 GeV 0.001 0.6 (sin(Ψ ZDC-SMD E+W □ ZDC-SMD E(W) 0.4 0.2 indicates Lambda's frame -0.001(a) STAR 10%-80% 1.12 20 40 60 80 Centrality [%] M_{inv} [GeV/c²] STAR, Phys. Rev. C 98 014910 (2018)

Lambdas don't emit daughters exactly along spin

Correlates angular momentum of QGP with Lambda's spin

The measured Ψ_1 differs from Ψ_{RP}

Initial measurements

• The STAR collaboration in 2007 measured $\overline{P}_{\Lambda/\overline{\Lambda}}$ at $\sqrt{s_{NN}}=62.4$ and 200 GeV consistent with zero with an upper limit of 2%

Initial measurements

- The STAR collaboration in 2007 measured $\overline{P}_{\Lambda/\overline{\Lambda}}$ at $\sqrt{s_{NN}}=62.4$ and 200 GeV consistent with zero with an upper limit of 2%
- Later measurements at lower energies showed significant $\overline{P}_{\Lambda/\overline{\Lambda}}$ getting larger with decreasing $\sqrt{s_{NN}}$

Initial

- The Si measu and 20 zero w
- Later energ

Later observation

- A more recent, high-statistics data set at $\sqrt{s_{NN}} = 200 \text{ GeV}$ taken by STAR shows significant $\overline{P}_{\Lambda/\Lambda}$ of 0.25%
- ALICE recently measured $\overline{P}_{\Lambda/\overline{\Lambda}}$ using Pb+Pb consistent with zero within uncertainties

STAR, Phys. Rev. C 98 014910 (2018) ALICE, Phys. Rev. C 101 044611 (2020)

Joseph R. Adams | MH CAGA formula Users' Meeting $|\eta| < 0.8$

Energy-dependent model predictions

- Various model predictions show increasing $\overline{P}_{\Lambda/\overline{\Lambda}}$ as $\sqrt{s_{NN}}$ decreases
 - Viscous hydrodynamics
 - Karpenko I, Becattini F. Eur. Phys. J. C77:213 (2017)
 - Partonic transport
 - Li H, Pang LG, Wang Q, Xia XL. Phys. Rev. C96:054908 (2017)
 - Hadronic transport
 - Vitiuk O, Bravina LV, Zabrodin EE arXiv:1910.06292 [hep-ph] (2019)
 - Chiral-kinetic transport
 - Sun Y, Ko CM. Phys. Rev. C96:024906 (2017)

Relation to vorticity

• Using $\overline{P}_{\Lambda/\overline{\Lambda}}$ to measure vorticity should be straightforward, but "feeddown" of Lambdas from parent particles complicates things

$$\begin{pmatrix} \overline{\omega}_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix}
\frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) \\
\frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\
\frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\
\frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix}$$

F. Becattini,1 I. Karpenko, M.A. Lisa, I. Upsal, and S.A. Voloshin, Phys. Rev. C **95**, 054902 (2017)

Centrality dependence

- High-statistics data sets at $\sqrt{s_{NN}} = 27$ and 200 GeV allow for the study of centrality dependence
- $\overline{P}_{\Lambda/\overline{\Lambda}}$ becomes larger for more peripheral collisions; as expected from a \overline{J} -driven effect!

J. R. Adams (STAR), Quark Matter 2019 Proceedings (Phys. Rev. C)

Adam J, et al. Phys. Rev. C 98 14910 (2018)

p_T dependence

- These data sets also allow for study of p_T dependence
- Scattering at low p_T or jet fragmentation at high p_T may reduce $\overline{P}_{\Lambda/\overline{\Lambda}}$
- With given uncertainties, we see no such dependence

J. R. Adams (STAR), Quark Matter 2019 Proceedings (Phys. Rev. C)

Adam J, et al. Phys. Rev. C 98 14910 (2018)

η dependence

• The $\sqrt{s_{NN}}$ dependence could be dominated by an underlying η dependence

Not observed!

Adam J, et al. Phys. Rev. C 98 14910 (2018)

Low energy

- It is unlikely $\overline{P}_{\Lambda/\overline{\Lambda}}$ ever starts to rise as $\sqrt{s_{NN}}$ increases
- What happens as $\sqrt{s_{NN}}$ goes to zero?
- Various models predict sharp rise below STAR BES energies before falling, but models are being "pushed to the limits"
 - Three-fluid dynamics
 - Y. Ivanov, V. Toneev, and A. Soldatov, Phys. Rev. C483100, 014908 (2019).
 - UrQMD
 - Deng XG, Huang XG, Ma YG, Zhang S

 22-10-arXiv:2001.01371 [nucl-th]ph(24020)HIC/AGS Annual Users' Meeting

Low energy

- It is unlikely $\overline{P}_{\Lambda/\overline{\Lambda}}$ ever starts to rise as $\sqrt{s_{NN}}$ increases
- What happens as $\sqrt{s_{NN}}$ goes to zero?
- The STAR Collaboration recently took a high-statistics data set at $\sqrt{s_{NN}}=3$ GeV, which will shed light on $\overline{P}_{\Lambda/\overline{\Lambda}}$ at sub-QGP energies
- η dependence at this energy will also answer questions
 - STAR will be able to accept even the most forward Λs

Low energy

- It is unlikely $\overline{P}_{\Lambda/\overline{\Lambda}}$ ever starts to rise as $\sqrt{s_{NN}}$ increases
- What happens as $\sqrt{s_{NN}}$ goes to zero?
- If we find non-zero \overline{P}_{Λ} at $\sqrt{s_{NN}}=3$ GeV...
 - Are we forming QGP droplets?
 - How viscous is the overlap region?
 - What is the spin equilibration timescale?

- Vorticity gives positive contribution to P_{Λ} and $P_{\overline{\Lambda}}$
- $|\overline{B}|$ enhances $P_{\overline{\Lambda}}$ and suppresses P_{Λ}
 - $\overline{\mu}_{B, \Lambda} = -\overline{\mu}_{B, \overline{\Lambda}}$

- Vorticity gives positive contribution to P_{Λ} and $P_{\overline{\Lambda}}$
- $|\overline{B}|$ enhances $P_{\overline{\Lambda}}$ and suppresses P_{Λ}
 - $\overline{\mu}_{B, \Lambda} = -\overline{\mu}_{B, \overline{\Lambda}}$
 - We measure $|\overline{B}|$ via P_{Λ} , $P_{\overline{\Lambda}}$ splitting

STAR, Nature 548 (2017) 62548

- Vorticity gives positive contribution to P_{Λ} and $P_{\overline{\Lambda}}$
- $|\overline{B}|$ enhances $\mathrm{P}_{\overline{\Lambda}}$ and suppresses P_{Λ}
 - $\overline{\mu}_{B, \Lambda} = -\overline{\mu}_{B, \overline{\Lambda}}$
 - We measure $|\vec{B}|$ via P_{Λ} , $P_{\overline{\Lambda}}$ splitting
- Potentially measure magnetic susceptibility of the QGP, $\sigma_{LQCD}!$

L. McLerran and V. Skokov, Nucl. Phys. A 929, 184 (2014)

- Vorticity gives positive contribution to P_{Λ} and $P_{\overline{\Lambda}}$
- $|\overrightarrow{B}|$ enhances $P_{\overline{\Lambda}}$ and suppresses P_{Λ}
 - $\overline{\mu}_{B, \Lambda} = -\overline{\mu}_{B, \overline{\Lambda}}$
 - We measure $|\overline{B}|$ via P_{Λ} , $P_{\overline{\Lambda}}$ splitting
- Potentially measure magnetic susceptibility of the QGP, $\sigma_{LQCD}!$
- We need to be careful with this interpretation! Such splitting can have other explanations
 - Spin-meson field interaction
 - L. Csernai, J. Kapusta, and T. Welle, PRC 99 021901(R) (2019)

- Vorticity gives positive contribution to P_{Λ} and $P_{\overline{\Lambda}}$
- $|\overline{B}|$ enhances $P_{\overline{\Lambda}}$ and suppresses P_{Λ}
 - $\overline{\mu}_{B, \Lambda} = -\overline{\mu}_{B, \overline{\Lambda}}$
 - We measure $|\vec{B}|$ via P_{Λ} , $P_{\overline{\Lambda}}$ splitting
- Potentially measure magnetic susceptibility of the QGP, $\sigma_{LQCD}!$
- We need to be careful with this interpretation! Such splitting can have other explanations
 - Spin-meson field interaction
 - L. Csernai, J. Kapusta, and T. Welle, PRC 99 021901(R) (2019)
 - Core-corona

- \overline{P} is affected by:
 - $\langle \omega_{\mathrm{QGP}} \rangle$
 - $|\overline{B}|$
 - Production time
 - Production location
 - etc.
- To establish the global nature of \overline{P} , it is necessary to study other particles
 - Parity-violating hyperons are the most straightforward way to do this

Global \overline{P}_{Ξ} , \overline{P}_{Ω}

• As before (with Λ s), we know how $\Xi \to \Lambda + \pi^-$ and $\Omega \to \Lambda + K$ decay with respect to their spin:

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha_H \mathbf{P}_H \cdot \hat{\boldsymbol{p}}_B^* \right)$$

- $\alpha_{\Lambda} = 0.750 \pm 0.009$
- $\alpha_{\Xi} = -0.401 \pm 0.01$
- $\alpha_{\Omega} = 0.0157 \pm 0.0021$
- α_{Ω} being small makes the measurement of \overline{P}_{Ω} in this case difficult. Instead, $\overrightarrow{P}_{\Lambda}^* = C_{\Omega-\Lambda} \overrightarrow{P}_{\Omega}^*$ is used, with $C_{\Omega-\Lambda} = 0.6$

Egor Alpatov (STAR), iCPPA 2020

Global \overline{P}_{Ξ} , \overline{P}_{Ω}

- Recent Measurements of \overline{P}_{Ξ} at $\sqrt{s_{NN}}=27$ GeV by STAR agree with previous $\overline{P}_{\Lambda/\overline{\Lambda}}$ measurements
- More statistics are obviously needed
- These polarizations are being actively studied at other energies by STAR
- Recent detector upgrades (esp. iTPC) will be very useful in this search

Egor Alpatov (STAR), iCPPA 2020

• Just as global $\overline{P}_{\Lambda/\overline{\Lambda}}$ comes from collision-driven shear in the QGP in the $\widehat{x} - \widehat{z}$ plane...

• Just as global $\overline{P}_{\Lambda/\overline{\Lambda}}$ comes from collision-driven shear in the QGP in the $\widehat{\chi} - \widehat{z}$ plane...

• Just as global $\overline{P}_{\Lambda/\overline{\Lambda}}$ comes from collision-driven shear in the QGP in the $\widehat{x} - \widehat{z}$ plane...

• Just as global $\overline{P}_{\Lambda/\overline{\Lambda}}$ comes from collision-driven shear in the QGP in the $\widehat{x}-\widehat{z}$ plane, we can expect $\overline{P}_{\Lambda/\overline{\Lambda}}$ along \widehat{z} coming from flow-driven shear in the $\widehat{x}-\widehat{y}$ plane

• Just as global $\overline{P}_{\Lambda/\overline{\Lambda}}$ comes from collision-driven shear in the QGP in the $\widehat{x}-\widehat{z}$ plane, we can expect $\overline{P}_{\Lambda/\overline{\Lambda}}$ along \widehat{z} coming from flow-driven shear in the $\widehat{x}-\widehat{y}$ plane

• Just as global $\overline{P}_{\Lambda/\overline{\Lambda}}$ comes from collision-driven shear in the QGP in the $\widehat{x}-\widehat{z}$ plane, we can expect $\overline{P}_{\Lambda/\overline{\Lambda}}$ along \widehat{z} coming from flow-driven shear in the $\widehat{x}-\widehat{y}$ plane

- Just as global $\overline{P}_{\Lambda/\overline{\Lambda}}$ comes from collision-driven shear in the QGP in the $\widehat{x}-\widehat{z}$ plane, we can expect $\overline{P}_{\Lambda/\overline{\Lambda}}$ along \widehat{z} coming from flow-driven shear in the $\widehat{x}-\widehat{y}$ plane
 - Measure with $\langle \cos{(\theta_{\rm p}^*)} \rangle$ as a function of $\varphi_{\Lambda/\overline{\Lambda}} \Psi_2$, as opposed to $\langle \sin{(\Psi_1 \varphi_{\rm p}^*)} \rangle$ from before

- Just as global $\overline{P}_{\Lambda/\overline{\Lambda}}$ comes from collision-driven shear in the QGP in the $\widehat{x} - \widehat{z}$ plane, we can expect $\overline{P}_{\Lambda/\overline{\Lambda}}$ along \widehat{z} coming from flowdriven shear in the $\hat{x} - \hat{y}$ plane
 - Measure with $\langle \cos{(\theta_{\rm p}^*)} \rangle$ as a function of $\varphi_{\Lambda/\overline{\Lambda}} \Psi_2$, as opposed to $\langle \sin (\Psi_1 - \varphi_n^*) \rangle$ from before
- Naïvely expect $\langle \cos(\theta_{\rm p}^*) \rangle \propto \sin(\varphi_{\Lambda/\Lambda} - \Psi_2)$

- Just as global $\overline{P}_{\Lambda/\overline{\Lambda}}$ comes from collision-driven shear in the QGP in the $\widehat{x}-\widehat{z}$ plane, we can expect $\overline{P}_{\Lambda/\overline{\Lambda}}$ along \widehat{z} coming from flow-driven shear in the $\widehat{x}-\widehat{y}$ plane
 - Measure with $\langle \cos{(\theta_{\rm p}^*)} \rangle$ as a function of $\varphi_{\Lambda/\overline{\Lambda}} \Psi_2$, as opposed to $\langle \sin{(\Psi_1 \varphi_{\rm p}^*)} \rangle$ from before
- Naïvely expect $\langle \cos(\theta_{\rm p}^*) \rangle \propto \sin(\varphi_{\Lambda/\overline{\Lambda}} \Psi_2)$

• This is what we measure of the R. Adams - RHIC/ Annual Users' Meeting

- This agrees with *some* model descriptions
 - (3+1)D PICR hydro
 - Y. Xie, D. Wang, and L. P.
 Csernai, EPJ C 80, 39 (2020)
 - Chiral kinetic
 - Y. Sun and C.-M. Ko, PRC 99, 011903(R) (2019)

- This agrees with some model descriptions
 - (3+1)D PICR hydro
 - Y. Xie, D. Wang, and L. P. Csernai, EPJ C 80, 39 (2020)
 - Chiral kinetic
 - Y. Sun and C.-M. Ko, PRC 99, 011903(R) (2019)
- it disagrees with others
 - UrQMD initial cond. + hydro
 - F. Becattini and I. Karpenko, PRL.120.012302 (2018)
 - AMPT
 - X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Global spin polarization of vector mesons

- Vector mesons produced by quark combination $q\overline{q} \rightarrow V$ have equal probabilities of occupying the three spin states, given no global polarization:
 - $|1 \ 1\rangle = |\uparrow\uparrow\rangle$
 - $|1 \ 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$
 - $|1 1\rangle = |\downarrow\downarrow\rangle$
- The angular distribution of decay products can be written with the spin density matrix $\rho_{\rm NN}$; the relevant observable

is
$$\rho_{00} = \frac{1}{3} - \frac{8}{3} \langle \cos [2(\varphi_p^* - \Psi_{RP})] \rangle$$

- Deviation of ρ_{00} from indicates global polarization
- $\rho_{00} < \frac{1}{3} \leftrightarrow \overline{\omega}$

Global spin polarization of vector mesons

- STAR measurements of ρ_{00} at $\sqrt{s_{NN}} = 54.4$, 200 GeV for K^{*0} , φ mesons show deviation from 1/3
 - Below $\frac{1}{3}$ for K^{*0} and above for φ

Global spin polarization of vector mesons

- STAR measurements of ρ_{00} at $\sqrt{s_{NN}}=54.4$, 200 GeV for K^{*0} , φ mesons show deviation from $^{1}/_{3}$
 - Below $^1/_3$ for K^{*0} and above for φ
- ALICE measurements agree qualitatively for K^{*0} , but are below $^1\!/_3$ for φ
 - What is driving this? $\overline{\omega}$ domination at lower energy and fragmentation/ $|\overline{B}|$ domination at higher energy?

Future measurements

• Additionally, ρ_{00} falls below $^1\!/_3$ much further than expected based on $\overline{P}_{\Lambda/\overline{\Lambda}}$ -driven vorticity measurements

• Future high-statistics data sets complemented by detector upgrades hold important information!

Future measurements

- To establish the global nature of \overline{P} , it is necessary to study how \overline{P} depends on spatial/temporal particle formation
 - Study $\overline{P}_{\Lambda/\overline{\Lambda}}$ w.r.t. rapidity
 - Study \overline{P}_{Ξ} , \overline{P}_{Ω} alongside $\overline{P}_{\Lambda/\overline{\Lambda}}$
- Future high-statistics data sets complemented by detector upgrades hold important information!

Summary

- Significant $\overline{P}_{\Lambda/\overline{\Lambda}}$ at RHIC energies
- Will soon measure \overline{P}_{Λ} at $\sqrt{s_{NN}}=3$ GeV including y dependence with most forward Λs being measured!
- Possible $|\overline{B}|$ measurement via P_{Λ} , $P_{\overline{\Lambda}}$
- \overline{P}_{Ξ} , \overline{P}_{Ω} help establish global nature of \overline{P}
- Important questions still remain!
 - Will we find non-zero $\overline{P}_{\Lambda/\overline{\Lambda}}$ in collisions with insufficient energy to form QGP?
 - Is $\overline{P}_{\Lambda/\overline{\Lambda}}$ migrating to forward rapidity at higher energies?
 - How do we reconcile measured longitudinal $\overline{P}_{\Lambda/\overline{\Lambda}}$ with models that predict the opposite behavior?
 - Why the $\rho_{00, \varphi}$ discrepancy between STAR and ALICE?
 - Why the $\langle \omega_{\rm QGP} \rangle$ discrepancy between ρ_{00} and $\overline{P}_{\Lambda/\overline{\Lambda}}$ derivations?
 - And more!!!
- High-statistics data sets by STAR along with numerous detector upgrades now in place will be cruicial to answering these!

 Joseph R. Adams RHIC/AGS Annual Users' Meeting

